SL(2,IR) is the commutator subgroup of GL(2,IR)

Here is a proof of the above fact.

Let N be the commutator subgroup of the general linear group GL(2,\mathbb R); i.e.,

N=\langle ABA^{-1}B^{-1}:A,B\in GL(2,\mathbb R)\rangle.

First, it is clear that N is contained in the special linear group SL(2,\mathbb R), since \det(ABA^{-1}B^{-1})=1 for any A,B\in GL(2,\mathbb R). Next, we claim that N contains all matrices

\begin{pmatrix} 1 & b\\ 0 & 1\end{pmatrix}.

This follows from noting that

\begin{pmatrix} 1 & b\\ 0 & 1\end{pmatrix}=\begin{pmatrix} 1 & b\\ 0 & b\end{pmatrix}\begin{pmatrix} 1 & 1\\ 0 & 1\end{pmatrix}\begin{pmatrix} 1 & b\\ 0 & b\end{pmatrix}^{-1}\begin{pmatrix} 1 & 1\\ 0 & 1\end{pmatrix}^{-1}.

By taking transposes, it also follows that N contains all matrices

\begin{pmatrix} 1 & 0\\ c & 1\end{pmatrix}.

Further, N contains all matrices

\begin{pmatrix} a & 0\\ 0 & 1/a\end{pmatrix}

since

\begin{pmatrix} a & 0\\ 0 & 1/a\end{pmatrix}=\begin{pmatrix} a & 0\\ 0 & 1\end{pmatrix}\begin{pmatrix} 0 & 1\\ 1 & 0\end{pmatrix}\begin{pmatrix} a & 0\\ 0 & 1\end{pmatrix}^{-1}\begin{pmatrix} 0 & 1\\ 1 & 0\end{pmatrix}^{-1}

for any a\neq 0.

Now let

\begin{pmatrix} a & b\\ c & d\end{pmatrix}\in SL(2,\mathbb R).

Then ad-bc=1. Using the above results,

\begin{pmatrix} a & b\\ c & d\end{pmatrix}=\begin{pmatrix} 1 & 0\\ c/a & 1\end{pmatrix}\begin{pmatrix} 1 & ab\\ 0 & 1\end{pmatrix}\begin{pmatrix} a & 0\\ 0 & 1/a\end{pmatrix}\in N

if a\neq 0, and

\begin{pmatrix} a & b\\ c & d\end{pmatrix}=\begin{pmatrix}0&1\\-1&0\end{pmatrix}\begin{pmatrix}1&-\frac{d}{b}\\ 0&1\end{pmatrix}\begin{pmatrix}1&0\\ ab&1\end{pmatrix}\begin{pmatrix}1/b&0\\ 0&b\end{pmatrix}\in N

if b\neq 0, and the latter since

\begin{aligned}\begin{pmatrix} 0 & -1\\ 1 & 0\end{pmatrix}=&\begin{pmatrix}x&y\\0&-x-y\end{pmatrix}\begin{pmatrix}-x-y&0\\ x&y\end{pmatrix}\begin{pmatrix}x&y\\0&-x-y\end{pmatrix}^{-1}\begin{pmatrix}-x-y&0\\ x&y\end{pmatrix}^{-1}\\ \in &N\end{aligned}

for any x,y,x+y\neq 0. Thus SL(2,\mathbb R)\subseteq N, i.e., N=SL(2,\mathbb R).

Advertisements

Leave a comment

Filed under Linear algebra

Minkowski’s criterion

Here is a related post that I find interesting.

In linear algebra, Minkowski‘s criterion states the following.

Theorem (Minkowski’s Criterion). Let A be an n\times n matrix with real entries such that the diagonal entries are all positive, off diagonal entries are all negative, and the row sums are all positive. Then \det(A)\neq 0.

This is a nice criterion and is not very difficult to prove, but for a random matrix it is asking too much. To decide whether a matrix is singular one usually looks for a row/column consisting of zeros or adding up to zero. The following result gives sufficient conditions for this to work. Unfortunately, it does not generalise Minkowski’s result.

Theorem. Let A be a n\times n matrix with real entries such that its row sums are all \ge 0, its lower diagonal entries are \ge 0 and its upper diagonal entries are \le 0. Then \det(A)=0 if and only if A has either a row consisting entirely of zeros or all the row sums equal to zero.

Proof. Suppose that Ab=0, where b=(b_1,\dots,b_n)^T\neq 0. Assume that b_1\ge\cdots\ge b_n. Then there exists 1\le m<n such that a_{1,1}',\dots,a_{1,m}'\ge 0 and a_{1,m+1}',\dots,a_{1,n}'\le 0. Hence

\begin{aligned}0=\sum_{j=1}^na_{1,j}'b_j&\ge b_m\sum_{j=1}^ma_{1,j}'+b_{m+1}\sum_{j=m+1}^na_{1,j}\\&\ge (b_m-b_{m+1})\sum_{j=1}^ma_{1,j}'\ge 0.\end{aligned}

So we must have (i) b_1=\cdots=b_m, (ii) b_{m+1}=\cdots=b_n, (iii) a_{1,1}'+\cdots+a_{1,n}'=0 and (iv) either b_m=b_{m+1} or a_{1,1}'+\cdots+a_{1,m}'=0. These boil down to having either b_1=\cdots=b_n or a_{1,1}'=\cdots=a_{1,n}'=0. Apply this argument to each row of A to obtain the desired conclusion. \square

Leave a comment

Filed under Linear algebra

Simple cases of Jacobson’s theorem

A celebrated theorem of Jacobson states that

Theorem. Let R be a ring, not necessarily containing 1. If, for each a\in R there exists a positive integer n such that a^n=a, then R is commutative.

This is a very strong and difficult result (although not very useful in practice). However, we can obtain some special cases via elementary means.

Proposition 1. Let R be a ring such that for each a\in R we have a^2=a. Then R is commutative.

Proof. Let a,b\in R. Then a+b=(a+b)^2=a^2+ab+ba+b^2=a+ab+ba+b, i.e., ab=-ba. Again, a-b=(a-b)^2=a^2-ab-ba+b^2=a-ab-ba+b, i.e., ab=-ba+2b. Thus 2b=0, i.e., b=-b for each b\in R. Thus ab=-ba=ba, as desired. \square

The next case is already considerably harder.

Proposition 2. Let R be a ring such that for each a\in R we have a^3=a. Then R is commutative.

Proof. Let a,b\in R. Then a+b=(a+b)^3 shows that

(*)\qquad\qquad\qquad a^2b+aba+ba^2+ab^2+bab+b^2a=0,

and a-b=(a-b)^3 shows that

a^2b+aba+ba^2=ab^2+bab+b^2a.

Hence

(**)\qquad\qquad\qquad\qquad 2(a^2b+aba+ba^2)=0

for all a,b\in R.

Plugging a=b into (**) gives 6a=0, i.e., 3a=-3a for each a\in R.

Plugging b=a^2 into (*) gives 3(a^2+a)=0, i.e., 3a^2=3a for each a\in R. Replacing a by a+b gives 3(ab+ba)=0, i.e., 3(ab-ba)=0.

Also, multiplying (**) by a first on the left and then on the right and then subtracting the two gives 2(ab-ba)=0.

From the last two paragraphs we conclude that ab-ba=0 for all a,b\in R. \square

Corollary. Let R be a ring such that for each a\in R we have a^n=a for some n\le 3. Then R is commutative.

Proof. Note that if a^n=a for some n\le 3 then a^3=a. Hence the result follows by Proposition 2. \square

Leave a comment

Filed under Algebra

A nice group theory result

While working on some group theory problems today a friend and I came up with the following result.

Lemma. Let H be a normal subgroup of a finite group G such that \gcd(|H|,|G/H|)=1. If the order of g\in G divides |H|, then g\in H.

Proof. Let d be the order of g. Then the order d' of gH in G/H divides both d and |G/H|. But \gcd(d,|G/H|)=1. Hence d'=1, i.e., gH=H, i.e., g\in H. \square

Corollary 1. Let H be a normal subgroup of a finite group G such that \gcd(|H|,|G/H|)=1. If K\le G such that |K| divides |H|, then K\le H.

Proof. Apply the lemma to the elements of K. \square

Corollary 2. Let H be a normal subgroup of a finite group G such that \gcd(|H|,|G/H|)=1. Then H is the unique subgroup of G of order |H|.

Proof. Use Corollary 1. \square

Here is an example of the lemma in action.

Problem. Show that S_4 has no normal subgroup of order 8 or 3.

Solution. If H is a normal subgroup of S_4 of order 8, then \gcd(|H|,|S_4/H|)=1. Hence every element of order 2 or 4 in S_4 must lie in H. In particular, (1\ 2),(1\ 2\ 3\ 4)\in H. By a result in the previous post, H=S_4, a contradiction.

Likewise, if H is a normal subgroup of S_4 of order 3, then H must contain every 3-cycle; in particular, (1\ 2\ 3),(2\ 3\ 4)\in H. Hence (1\ 2\ 3)(2\ 3\ 4)=(1\ 2)(3\ 4)\in H. But this has order 2, and 2\nmid 3, a contradiction. \square

More generally, we can prove the following.

Corollary 3. S_n for n\ge 4 has no non-trivial proper normal subgroup H with \gcd(|H|,|S_n/H|)=1.

Proof. Suppose otherwise and let d divide |H|. Then H must contain all d-cycles. So if |H| is even then taking d=2 gives H=S_n. If |H| is odd, it contains the cycles \sigma=(1\ \cdots\ d) and \rho=(d\ \cdots\ 2\ n) for some 3\le d<n. Then \sigma\rho=(1\ 2\ n)\in H has order 3. So |H| contains all 3-cycles, i.e., A_n\le H. Since A_n\le S_n is maximal, either H=A_n or H=S_n, a contradiction. \square

Leave a comment

Filed under Algebra

Generating the symmetric group

It’s a fairly well-known fact that the symmetric group S_n can be generated by the transposition (1\ 2) and the ncycle (1\ \cdots\ n). One way to prove it is as follows.

  1. Show that the transpositions (a\ b) for a,b\in\{1,\dots,n\} generate S_n.
  2. Show that any transposition (a\ b) can be obtained from (1\ 2) and (1\ \cdots\ n).

We also need the following key lemma the proof of which is routine.

Lemma. \rho (a\ b)\rho^{-1}=(\rho(a)\ \rho(b)) for any \rho\in S_n and a,b\in\{1,\dots,n\}.

(1) is easily proven by the observation that any permutation of 1,\dots,n can be obtained by swapping two elements at a time. (2) is a bit more interesting.

We first use the lemma to observe that any transposition of the form (a\ a+1) can be obtained from (1\ 2) upon repeated conjugation by (1\ \cdots\ n). Now, since (a\ b)=(b\ a), WLOG let a<b. Using the lemma, conjugating (a\ a+1) by (a+1\ a+2) gives (a\ a+2), conjugating (a\ a+2) by (a+2\ a+3) gives (a\ a+3), etc. In this way we can eventually get (a\ b). So we are done by (1).

This argument shows that S_n can in fact be generated by (a\ a+1) and (1\ \cdots\ n) for any a.


Now let’s consider an arbitrary transposition \tau and an n-cycle \sigma in S_n. By relabeling 1,\dots,n, we can assume that \sigma=(1\ \cdots\ n) and \tau=(a\ b) for a<b. Note that \sigma^{-a+1}\tau\sigma^{a-1}=(1\ c) where c=b-a+1, so WLOG \tau=(1\ c). Then \sigma^k\tau\sigma^{-k}=(1+k\ c+k) for each k. In particular, taking k=c-1 gives \sigma^{c-1}\tau\sigma^{-c+1}=(c\ 2c-1)=:\rho. Then \rho\tau\rho^{-1}=(1\ 2c-1). Repeating this procedure produces (1\ c+k(c-1)) for k=0,1,2,\dots. Now \{c+k(c-1):k=0,1,\dots,n-1\} is a complete set of residues mod n if and only if \gcd(c-1,n)=1, i.e., \gcd(b-a,n)=1. So we’ve shown that

Theorem. Let \tau=(a\ b) be a transposition and \sigma=(c_1\ \cdots\ c_n) be an n-cycle in S_n. Then \tau and \sigma generate S_n if and only if \gcd(c_b-c_a,n)=1.

In particular, (a\ b) and (1\ \cdots\ n) generate S_n if and only if \gcd(b-a,n)=1.

Corollary. S_p is generated by any transposition and any p-cycle for p prime.

1 Comment

Filed under Algebra