Sums of equal powers

Let k be a fixed positive integer. Let

S_k(n):=1^k+\cdots+n^k.

Let us consider expressions of the form

\pm 1^k\pm\cdots\pm n^k=\displaystyle\sum_{j=1}^nj^ke_j=: S(e_1,\dots,e_n)

where e_j=\pm 1\,\forall j.

Note that S takes 2^n possible values in [-S_k(n),S_k(n)] which are all congruent modulo 2. Hence the number of distinct values that S takes is at most

\displaystyle\left\lceil\frac{2S_k(n)+1}{2}\right\rceil=S_k(n)+1

Since this is O(n^{k+1}), it is eventually dominated by 2^n. Thus for all sufficiently large n, we can find e_j,e_j'\in\{\pm 1\} such that

\displaystyle\sum_{j=1}^nj^ke_j=\sum_{j=1}^nj^ke_j'\Leftrightarrow\sum_{j=1}^n(e_j-e_j')j^k=0

with e_j\neq e_j' for some j.

Note that e_j-e_j'\in\{0,\pm 2\}\,\forall j. Let A=\{j:e_j-e_j'=2\} and B=\{j:e_j-e_j'=-2\}. Then A and B are non-empty and disjoint, A\cup B\subseteq\{1,\dots,n\}, and

\displaystyle\sum_{j\in A}j^k=\sum_{j\in B}j^k.

Thus:

Proposition. Let k be a fixed positive integer. Then one can find distinct positive integers x_1,\dots, x_r,y_1,\dots,y_s such that

x_1^k+\cdots+x_r^k=y_1^k+\cdots+y_s^k.

In particular, one can choose x_i,y_j\le\min\{n\in\mathbb N: 2^n>S_k(n)+1\}\,\forall i,j.

Example. Let k=4. Note that 2^n>S_4(n)+1 for all n\ge 20. So there exist distinct integers 1\le x_i,y_j\le 20 such that \sum_ix_i^4=\sum_jy_j^4. In particular, one has

1^4+2^4+9^4=3^4+7^4+8^4

as well as

7^4+8^4+10^4+13^4=3^4+9^4+14^4.

Likewise, for fifth powers we can find such x_i‘s and y_j‘s in [1,26].

This wikipedia article contains many results related to sums of powers.

Advertisements

Leave a comment

Filed under Number theory

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s