Ring of integers of cyclotomic field

Let \zeta=\zeta_n=e^\frac{2\pi i}{n} be a primitive n-th root of unity, and let K=\mathbb Q(\zeta). I am going to outline a proof that \mathcal O_K=\mathbb Z[\zeta], based on several homework problems from one of my recent courses. There are probably many other proofs of this, but I particularly like this one because it’s easy to follow, touches on a wide range of topics, and I worked hard through it!

First, let n=p^m be a prime power. The minimal polynomial of \zeta is the n-th cyclotomic polynomial

\displaystyle\Phi_n(X)=\Phi_{p^m}(X)=\sum_{j=0}^{p-1}X^{jp^{m-1}}.

Let f(X)=\Phi_n(X+1).

Exercise 1. Following the above notation, show that f satisfies the conditions of Eisenstein’s criterion for the prime p.

Consider the discriminant \Delta(f)=\Delta(R), where R=\mathbb Z[\zeta-1]. If q is a prime factor of \Delta(f), then f must have a multiple root modulo q. Hence X^{p^m}-1 will also have a multiple root modulo q. But \gcd(X^{p^{m}}-1, p^{m}X^{p^{m}-1})=1 in \mathbb Z/q\mathbb Z unless q=p. Thus \Delta(f)=\Delta(R)=[\mathcal O_K:R]^2\Delta(\mathcal O_K) is a power of p. In particular, [\mathcal O_K:R] is a power of p.

Exercise 2. Suppose that f\in\mathbb Z[X] satisfies the conditions of Eisenstein’s criterion for a prime number p. Let \alpha be a root of f and let R=\mathbb Z[\alpha]. Prove that there is exactly one prime ideal P\subseteq R that contains p, and that the local ring R_P is a DVR with uniformiser \alpha.

Now if Q\subseteq R is another prime ideal, then p\not\in Q. So [\mathcal O_K:R]\not\in Q.

Exercise 3. Let K be a number field and R\subseteq\mathcal O_K a subring of finite index d. If Q\subseteq R is a prime ideal not containing d, show that R_Q is a DVR.

I’ll include this solution because I love it!

Solution. Let D=\mathcal O_K. By going up, there is a prime ideal \tilde Q\subseteq D with \tilde Q\cap R=Q. We’ll show that D_{\tilde Q}=R_Q, so the result will follow.

Let a/b\in R_Q, so that a\in R, b\in R\setminus Q. If b\in \tilde Q, then b\in R\cap \tilde Q=Q, a contradiction. Hence b\not\in\tilde Q, i.e. a/b\in D_{\tilde Q}. Thus R_Q\subseteq D_{\tilde Q}.

Now let a/b\in D_{\tilde Q}, so that a\in D, b\in D\setminus\tilde Q. Then da\in R, db\in R, and a/b=(da)/(db). Note that b\not\in\tilde Q\supseteq Q, and d\not\in Q by assumption. So db\not\in Q since Q is a prime ideal. Thus a/b=(da)/(db)\in R_Q, i.e. D_{\tilde Q}=R_Q. \square

So R localised at any prime ideal is a DVR, implying that R=\mathbb Z[\zeta] is a Dedekind domain. Thus R=\mathcal O_K. This completes the proof for the prime power case.

Now we proceed by induction on the number of distinct prime factors of n. The base case has already been taken care of. So suppose that n=ab, where a,b>1 are coprime integers. Let L=\mathbb Q(\zeta_a) and M=\mathbb Q(\zeta_b). By the induction hypothesis, \mathcal O_L=\mathbb Z[\zeta_a] and \mathcal O_M=\mathbb Z[\zeta_b].

Exercise 4. Let L and M be number fields with discriminants \lambda and \mu respectively. Let \{a_1,\dots,a_m\} and \{b_1,\dots,b_n\} be integral bases for L and M respectively. Let K=LM=\mathbb Q(a_1,\dots,a_m,b_1,\dots,b_n) be the composite field of L and M. Suppose that [K:\mathbb Q]=[L:\mathbb Q][M:\mathbb Q] and that \gcd(\lambda,\mu)=1. Show that \{a_ib_j:1\le i\le m; 1\le j\le n\} is an integral basis for K.

So our main result will follow from exercise 4 once we have checked that all the hypotheses are satisfied.

(i) Checking K=LMFirstly, LM contains \zeta_a\zeta_b=e^{\frac{2\pi i(a+b)}{n}}=\zeta^{a+b}.

Exercise 5. If \gcd(a,b)=1, show that \gcd(a+b,ab)=1.

So writing j=a+b shows that \gcd(j,n)=1 and \zeta^j\in LM. If j^{-1}\in\{1,\dots,n\} is the multiplicative inverse of j\pmod n, then \zeta=(\zeta^j)^{j^{-1}}\in LM. Thus K\subseteq LM.

Again, since \zeta^a=\zeta_b and \zeta^b=\zeta_a, we have LM\subseteq K. Thus K=LM.

(ii) Checking [K:\mathbb Q]=[L:\mathbb Q][M:\mathbb Q]. We have

[K:\mathbb Q]=\varphi(n)=\varphi(ab)=\varphi(a)\varphi(b)=[L:\mathbb Q][M:\mathbb Q].

(iii) Checking \gcd(\lambda,\mu)=1This is slightly harder. We need a few more facts.

Exercise 6. Let E=\mathbb Q(\alpha) be a number field, and let f be the minimal polynomial of \alpha. Show that

\Delta(\alpha)=(-1)^{\binom{\deg(f)}{2}}N_{E/\mathbb Q}(f'(\alpha)).

Solution. Let f(x)=(x-\alpha_1)\cdots(x-\alpha_n). Then

\displaystyle\Delta(\alpha)=(-1)^{\binom n2}\prod_{i\neq j}(\alpha_i-\alpha_j)=(-1)^{\binom n2}\prod_i\prod_{j\neq i}(\alpha_i-\alpha_j).

Using Leibniz’s rule,

\displaystyle f'(x)=\sum_i\prod_{j\neq i}(x-\alpha_i)\Rightarrow f'(\alpha_i)=\prod_{j\neq i}(\alpha_i-\alpha_j).

Hence

\displaystyle\Delta(\alpha)=(-1)^{\binom n2}\prod_if'(\alpha_i)=(-1)^{\binom n2}N_{E/\mathbb Q}(f'(\alpha)). \square

Exercise 7. Using the previous exercise, show that \Delta(\zeta_n)\mid n^{\varphi(n)}.

Hint. Write X^n-1=\Phi_n(X)g(X), and use Leibniz’s rule to get n\zeta_n^{n-1}=\Phi_n'(\zeta_n)g(\zeta_n).

So \lambda=\Delta(\zeta_a) divides some power of a, and \mu=\Delta(\zeta_b) divides some power of b. Since \gcd(a,b)=1, we conclude that \gcd(\lambda,\mu)=1.

Advertisements

1 Comment

Filed under Algebra, Number theory

One response to “Ring of integers of cyclotomic field

  1. Pingback: Proof of binomial sum fact | Samin Riasat's Blog

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s